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In a number of recent publications (Meara and Buxton: 1987; Meara and Jones: 1988; Meara: 1990) I have suggested that it might be possible to use a YES/NO vocabulary test as a way of assessing vocabulary in a foreign language. A YES/NO vocabulary test consists of a series of items, some of which are real words, while the remainder are non-existent but orthographically possible words in the target language. The latter items are often referred to as pseudowords. An example of a simple YES/NO test is provided in Table 1, below. Some practical examples of tests of this sort have been developed, notably the Eurocentres Vocabulary Size Tes (Meara & Jones: 1990), which was designed primarily as a placement test for learners of English. A detailed discussion of YES/NO tests aimed at native speakers of English will be found in Anderson & Freebody (1981), and an early, little known discussion of the basic ideas a way of testing L2 proficiency can be found in Higgins (1977).
Table 1: simple YES/NO vocabulary test
Instructions
Cross out any word in this list whose meaning you do not know.
	cloakery
	breathe             
	crewel
	abdomen
	pudsey
	dapper

	directed
	adorable
	corkney
	hould  
	farthing
	sandal

	effector
	dicretule
	firearm
	etiolate
	riser
	bipaster

	potomite
	prolong
	hasten
	downgrade
	imagine
	britching

	meddle
	leucoin
	loathe
	scrotage
	tint
	tonal


With the single exception of Higgins, none of these published sources has been completely explicit about ways of scoring YES/NO tests. I have suggested that it might be possible to use scoring methods derived from Signal Detection Theory (the classic text here is Green & Swets: 1964) with tests of this kind. However, Signal Detection Theory is not well-known among Applied Linguists, so that there has been little discussion of this suggestion so far. In fact, some interesting theoretical problems arise when you try to apply Signal Detection models to vocabulary using YES/NO tests. The purpose of this paper is to explain my current thinking on how to score these tests, and to lay out some difficulties that I have not been able to find a solution for. I hope that readers whose mathematics is better than mine may be able to improve on my suggestions.
Signal Detection Theory was originally developed as a way of accounting for the behaviour of human operators working with complex displays used by the military. A typical situation is one where you have a machine that displays an analogue signal when a certain event occurs, and the operator has to take appropriate action on the strength of this signal. For instance, a radar screen may signal that an enemy submarine is in the vicinity, and the operator is required to report this to his captain. In theory, operators should always make a report when an enemy submarine is spotted by the radar; they should also refrain from making a report if the radar has not spotted a submarine. In practice, most operators do not operate perfectly: sometimes they fail to report a submarine that the radar has picked up; other times, they report a sighting when nothing is actually on the screen. Obviously, in a military context, mistakes of this kind are not trivial.
Traditional signal detection theory makes use of two basic measures to analyse the behaviour of operators. These measures are the HIT RATE (the probability of saying YES if a submarine is present) and the FALSE ALARM RATE (the probability of saying YES if a submarine is not in fact in the vicinity). Anderson & Freebody  (1981) suggested that the submarine detection model could be extended by analogy to decisions about whether items in a vocabulary test are words you know or not. The hit rate then corresponds to the probability of saying YES to a real word, while the Fals Alarm Rate corresponds to the probability of saying YES to a pseudoword. The underlying mathematics remains the same. As far as I am aware, Anderson & Freebody did not develop this suggestion, however.
In classical signal detection studies, the raw hit rate and the raw false alarm rate are used to calculate a wide range of derived measures. The two most commonly used are d’ (d prime) and ß (beta).
d’ is calculated by working out the probability of a Hit and  of a False Alarm, converting these probabilities to scores based on the standard normal distribution and subtracting the smaller value from the larger. The result, d’, is generally interpreted as an index of discrimination: it gives you an idea of how easy it is for a subject to distinguish between the two classes of stimuli: in our case, how easy it is for a testee to distinguish between real and pseudo words.
The calculation of d’ sounds more complicated than it really is in practice, and an example might help to make clear what the calculations are actually doing. Imagine that we have a testee who is just guessing wildly at random: on balance, you would expect their hit rate and their false alarm rate to be roughly equal. It would be possible to check this by comparing the Hit Rate and False Alarm Rate directly: the smaller the difference between these two scores the more likely it is that the testee is just guessing. However, a straightforward comparison of this sort overlooks the fact that some patterns of guesses are more likely than others: for instance, for someone guessing completely at random, a hit rate of 50% is much more likely than a hit rate of 5% or one of 99%. Converting the hit rates to normal deviates takes account of this.
Signal detection theorists argue that the d’ score is an index of a subject’s ability to discriminate between two classes of stimuli, and that it is independent of the other factor which contributes to the raw scores: the testee’s response bias. Response bias is a measure not of whether the tetee can discriminate between the two classes of stimuli, but whether they prefer to answer YES or NO. In our case, you could imagine two testees who are taking our YES/NO test: one testee is inclined to answer YES when in doubt, the other testee is more cautious, and inclined to say NO when in doubt. The  ß measure gives an indication of these tendencies.  ẞ, like d’, is traditionally calculated in terms of normal deviates.
Although both d’ and  ß are widely used as standard measures in the experimental literature, it is not clear to me that it is appropriate to use them in connection with YES/NO vocabulary tests. Both measures are properly used in cases where the data is normally distributed, and it is not immediately obvious that this assumption holds in the case of vocabulary tests. Fortunately, there does exist a set of non-parametric tests which can be used instead. Figures 1 and 2 will help to explain how these measures work.
The non-parametric measures are based on the geometry of a unit square (that is a square whose total are is 1 unit. Any combination of hits and false alarms can be plotted using the x-axis for false alarms and the y-axis for hits. So, for instance, point in figure 1 represents a hit rate of 75% and a false alarm rate of 15%. It will be immediately obvious that guessing behvaiour, giving rise to equal hit rates and false alarm rates produces a set of points which lie on the diagonal AC. Where the hit rate is higher than the false alarm rate, the point representing the score will lie in the triangle ABC. In the limiting case, where the hit rate is 100% and the false alarm rate is 0%, the point representing the scores lies on corner B. In intermediate cases between these extremes, as long as the hit rate is higher than the false alarm rate, the point representing the score will lie somewhere inside the triangle ABC.
The non-parametric index of discrimination is based on the area of the quadrilateral AZCD, This index is known as Ag  (Pastorre & Schreiber: 1974). For guessing behaviour, where the hit rate and the false alarm rate are equal, Ag=0.5; where discrimination is perfect - the hit rate is 100% and the false alarm rate is 0% - Ag=1. For intermediate combinations, Ag is calculated using equation.
     Ag= .5 + (h-f) * (1 + h-f)/ (4h*(1-f))                                                             eq. 1
where h is the hit rate and f is the false alarm rate.
The non-parametric index of response bias, also based on the geometry of the unit square, is to be found in Hodos (1970). Hodos points out that that a testee who responded NO except when very sure of themselves would produce a zero false alarm rate, and their score would therefore lie on the left-hand y-axis. A testee who adopts a more lax criterion would produce a point that lies to the right of the y-axis. In the extreme case of a testee who says YES to every test item, the point representing their score will lie on the top right hand corner of the square.
Hodos suggests that points lying along the diagonal represent zero bias, that is, given am ambiguous item, the testee is just as likely to say YES as to say NO. Points lying south of that diagonal indicate a tendency to say YES to ambiguous items, while points north of the diagonal represent an underlying item. Hodos goes on to argue that these tendencies can be quantified by comparing the areas of two triangles. The first triangle is formed by drawing a line from point 1,1 through the data point to intercept the y-axis. The second triangle is formed by drawing a line from point 0,0 through the data point to intercept the x-axis at the top of the square (see Figure 2). For points lying on the BD diagonal, the areas of these two triangles will be equal. In other cases, one triangle will be bigger than the other, and the ratios of these areas can be taken as an index of response bias. Grier (1971) suggests as a way of estimating this ratio the formula:
      B’ = (y(1-y) – x(1-x) /y(1-y) +x(1-x)                                                             eq 2
where x is the false alarm rate, and y is the hit rate. This equation produces a range of values from -1 to 1. Some care needs to be taken when the hit rate is very low and the false alarm rate is high. This, however, is a situation that does not appear to arise often with real YES/NO tests, where the False Alarm rate is typically very low.
The measures in practice.
In practice, most research using the YES/NO test format will be interested in two basic situations. In the first, we might want to ask whether two (or more) groups differ in their overall vocabulary size. For instance we might want to ask whether a group of learners following an intensive course of instruction develop bigger vocabularies than learners following more traditional courses spread over a longer time period. In this case, the appropriate measure of comparison would be Ag. That is, comparing the two groups on the Ag measure would give you an indication of whether the groups differ systematically in terms of their ability to discriminate between real words and imaginary words. If you found that the intensive course students had higher Ag measures, then it would be legitimate to infer that they also have larger vocabularies than the control group.
It is also possible that the two groups might differ on the B’ measure too. For instance, if the control group had a lower B’ score than the intensive study group, then you could infer that the control group was in general less likely to say YES to real words than the intensive group, irrespective of their overall vocabulary size. Comparisons of this sort might be important in 
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situations where teaching methods are expected to affect confidence. The B’ measure might also be important in situations where you are interested in the way a single group of subjects respond to different types of words in a YES/NO test. For instance, current ideas about lexical transfer suggest that testees faced with a YES/NO test containing a large proportion of cognate words might adopt a criterion that was different from the one they adopt in a test containing few cognates. Another area where the B’ measure might be useful is in the investigation of individual differences.
The second main type of experimental study is one where a simple comparison between two groups is not enough: what we want is a more detailed estimate of overall vocabulary size, or an estimate of what proportion of a sample vocabulary testees can be deemed to know. In this situation B’ is not relevant, and the simple measure Ag will not work. Something a little more complicated is required.
Suppose that we have a target vocabulary of 1000 words, and a YES/NO comprised of 50 real items, selected at random from the original 1000 , and 25 imaginary word items. Suppose too, that all the testees scored zero false alarms on the test. It would then be possible to estimate the number of words they know in the target vocabulary by simply converting the raw hit score into a proportion and scaling up to 1000. A score of 50 would thus correspond to a vocabulary of 1000 words, 25 to 500, 5 to 100 and so on. This is a standard practice, and doesn’t need any further justification here. Where the false alarm rate is greater than zero, the raw hit rate will overestimate the real hit rate, and need to be adjusted downwards. One relatively simple way of doing this is to calculate the alterative measure Δm (delta m) (Pastorre & Scheirer: 1974). To calculate Δm  you first work out the Ag value for an individual testee’s combination of hit and false alarm rates, and then work out what hit rate would produce the equivalent Ag value if the false alarm rate had been zero. Δm can then be multiplied by the sampling rate to produce an estimate of the testee’s vocabulary size.
Again, this sounds more complicated than it really is, and a couple of worked examples might help to make the basic idea clearer. Table 2 shows the values of Ag produced by various combinations of hit rate and false alarm rate. Look first at the column of figures corresponding to a false alarm rate of zero. It will be obvious that the figure for Ag varies systematically from 0.5 to 1.0. At high hit rates, Ag increases more or less linearly as the hit rate improves; for low hit rates, around zero, however, Ag decreases very rapidly. For a given hit rate, increasing the false alarm rate decreases the value of Ag. Now suppose, for example ,that on our 75 item test, a testee scores 4 hits  and 1 false alarm. These figures correspond to  a hit rate of 0.8 and a false alarm rate of 0.04. These two figures combine to produce an Ag value of 0.963. Table 2 shows that an Ag value of 0.963 corresponds to a true hit rate of 0.85. Since our test is based on a sample of 1000 words, this value of Δm  would correspond to a score of 850 words. Suppose, on the other hand, that our testee had scored 5 false alarms – a false alarm rate of 0.25. The Ag value corresponding to 0.9 and 0.25 is .897. The corresponding value from table 2 is about .585, so our estimate of this testee’s vocabulary size would be 585 words.
Where the hit rate and the false alarm rate are very close, the resulting Ag value will be very small – lower than 0.7. Values as low as this do not appear in table 2: they seem to represent small variations from guessing behaviour, and are probably best interpreted as equivalent to an Ag value of 0.5 and a Δm value of 0.
Further considerations
The main issue of principle that arises from this discussion is whether the non-parametric measures I have outlined provide a good basis for scoring YES/NO vocabulary tests. The question of whether YES/NO tests are valid and reliable indicators of vocabulary knowledge is not one that I wish to address here: as far as I can tell from the limited amount of research that I am a are of, the tests are surprisingly robust, but a proper evaluation of the technique still needs to be carried out. At this stage, however, I am more concerned with the practicalities of YES/NO test design and trying to establish some common standards within which a proper evaluation can be done.
The main practical issue which arises from the work discussed here is the question of what weight should be given to false alarms. There are two basic problems. Firstly, as can be seen from Table 2, an increasing false alarm rate reduces the Ag value very rapidly. My normal practice with YES/NO tests is to use twice as many real words as imaginary words. The pedagogical justification for this is obvious. Unfortunately, it has the disadvantage of allowing only a rough estimate of the true false alarm rate. For example, in a test of 75 items, (fifty real words and twenty-five imaginary words), each false alarm increases the false-alarm rate by 0.4 and this can lead to substantial differences in the resulting Ag score. In principle, this problem could be avoided by increasing the number of imaginary word items in a test. This would allow a finer assessment of the false alarm rate, but at the disadvantage of increasing the length of the test, and of making it harder for the testees to identify the items they really know.
The second problem arises from the fact that false alarm rates on YES/NO tests are generally quite low. Most testees make one or two false alarm responses in a test of, say, 60 items, but false alarm rates as high as 50% are relatively rare with the sorts of subjects I have been testing. Furthermore, in an idea signal detection paradigm, any non-signal should be just as likely to produce a YES response as any other. It is readily apparent, however, that not all pseudowords are equally likely to produce false alarms: where false alarms do occur, they almost always arise in connection with a limited set of items, rather than across the whole range of the pseudowords. This phenomenon makes me wonder whether the simple measure of false alarm rates implicit in the signal detection literature is really appropriate, or whether some other measure might be more appropriate. It may explain, for example, why Zimmerman et al. (1977) found that binary judgements about items in a YES/NO test were much less reliable than rating judgements. What we really need is a measure that penalises errors exponentially, rather than linearly. Some preliminary work by Suárez and Meara (in prep.) for Spanish suggests that reasonable estimates of vocabulary size emerge if the raw false-alarm rate is transformed to reduce low rates and raise higher rates. These estimates correspond quite closely to estimates obtained using other methods (e.g. Garcia Hoz: 1977). Unfortunately, Suárez and Meara admit that their transformation formula is not theoretically motivated, and was based largely on hunch. Clearly, this line of enquiry is one that deserves to be properly followed up.
Conclusion
In this paper, I have outlined a formal method for scoring YES/NO vocabulary tests, and shown how the hit rate and false alarm rate can be used to calculate the Ag, B’ and  Δm measures. Ag gives an indication of how easily testee can discriminate between two classes of stimulus; B’ is a measure of the response criterion a testee adopts;  Δm is the true hit rate corresponding to a given Ag value, and can be used as the basis for calculating overall vocabulary size.
I have also pointed out that these note are clearly not the last word on this topic. There are in particular some difficulties with the way false alarms fall out in these tests which need to be looked at by colleagues whose mathematics stretches a lot further than mine.
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Table 2
Values of Ag corresponding to values of Δm 
	Δm 
	Ag
	Δm 
	Ag
	Δm 
	Ag
	Δm 
	Ag
	Δm 
	Ag

	1.0
	1.0
	0.80
	0950
	0.60
	0.900
	0.40
	0.850
	0.20
	0.800

	0.99
	0.997
	0.79
	0948
	0.59
	0.898
	0.39
	0.847
	0.19
	0.798

	0.98
	0.995
	0.78
	0.945
	0.58
	0..895
	0.38
	0.845
	0.18
	0.795

	0.97
	0.992
	0.77
	0.943
	0.57
	0.892
	0.37
	0.843
	0.17
	0.792

	0.96
	0.990
	0.76
	0.940
	0.56
	0.890
	0.36
	0.840
	0.16
	0.790

	0.95
	0.998
	0.75
	0.937
	0.55
	0.887
	0.35
	0.838
	0.15
	0.787

	0.94
	0.985
	0.74
	0.935
	0.54
	0.885
	0.34
	0.835
	0.14
	0.785

	0.93
	0.983
	0.73
	0.932
	0.53
	0.883
	0.33
	0.833
	0.13
	0.782

	0.92
	0.980
	0.72
	0.930
	0.52
	0.880
	0.32
	0.830
	0.12
	0.780

	0.91
	0.977
	0.71
	0.927
	0.51
	0.878
	0.31
	0.827
	0.11
	0.778

	0.90
	0.975
	0.70
	0.925
	0.50
	0.875
	0.30
	0.825
	0.10
	0.775

	0.89
	0.972
	0.69
	0.922
	0.49
	0.872
	0.29
	0.823
	0.09
	0.772

	0.88
	0.970
	0.68
	0.920
	0.48
	0.870
	0.28
	0.820
	0.08
	0.770

	0.87
	0.968
	0.67
	0.918
	0.47
	0.867
	0.27
	0.818
	0.07
	0.767

	0.86
	0.965
	0.66
	0.915
	0.46
	0.865
	0.26
	0.815
	0.06
	0.765

	0.85
	0.963
	0.65
	0.912
	0.45
	0.863
	0.25
	0.812
	0.05
	0.762

	0.84
	0.960
	0.64
	0.910
	0.44
	0.860
	0.24
	0.810
	0.04
	0.760

	0.83
	0.958
	0.63
	0.907
	0.43
	0.858
	0.23
	0.807
	0.03
	0.758

	0.82
	0.955
	0.66
	0.905
	0.42
	0.855
	0.22
	0.805
	0.02
	0.755

	0.81
	0.952
	0.61
	0.903
	0.41
	0.853
	0.21
	0.802
	0.01
	0.752
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